

Gold-Catalyzed Hydroarylation of Alkenes with Dialkylanilines

Xingbang Hu,^{†,‡} David Martin,[†] Mohand Melaimi,[†] and Guy Bertrand^{*,†}

[†]UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0343, United States

[‡]School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

Supporting Information

ABSTRACT: Anti-Bredt di(amino)carbene supported gold(I) chloride complexes are readily prepared in two steps from the corresponding isocyanide complexes. In the presence of $KB(C_6F_5)_4$ as chloride scavenger, they promote the unprecedented hydroarylation reaction of alkenes with *N*,*N*-dialkylanilines with high *para*-selectivity. The latter are challenging arenes for Friedel-Craft reactions, due to their high basicity.

F riedel-Crafts reactions^{1,2} typically require Lewis acid catalysts and are therefore generally unsuitable for basic substrates. Classical textbooks especially emphasize their incompatibility with amines, which is a major limitation due to the ubiquity of this organic functionality.³ The intermolecular hydroarylation of alkenes,⁴ a powerful atom-economic method for the alkylation of arenes, is no exception. Besides a few examples with the parent aniline $(C_6H_5)NH_2$,^{5–7} there are only two reports of hydroarylation of styrene with the more basic *N*-methylaniline; with $\operatorname{Ru}_3(\operatorname{CO})_{12}$,^{5d} or a rhodium-based catalytic system, ^{5c} the reaction occurs at 140-150 °C. Under similar conditions, only 17% conversion was observed with the challenging N,N-dimethylaniline.^{5c} Similarly to hydroarylation reactions, metal-catalyzed hydroaminations⁸ are often inhibited by nucleophilic amines, which strongly bind the metal to form inert Werner-complexes.⁹ However, our group has demonstrated that cationic gold(I) complexes supported by (alkyl)-(amino)carbenes (CAACs)¹⁰ (Chart 1) can catalyze the

hydroamination of alkynes and allenes with a variety of amines,¹¹ including ammonia^{11b} and hydrazine.^{11g} In 2013, we reported that another type of electrophilic carbene, namely, the "anti-Bredt NHCs" (pyrNHCs),¹² allows for the gold-catalyzed hydrohydrazination of terminal alkynes at room temperature.¹³ This was a significant improvement since CAAC-Au(I) systems typically require temperatures of 70–110 °C for the same transformation.^{11g} Here we report that Au(I)/pyrNHC complexes promote the hydroarylation of alkenes with *N*,*N*-dialkylanilines with high *para*-selectivity.¹⁴

The scope of the previously reported synthesis of pyrNHCgold chloride complexes was limited by the scarcity of available precursors, and the instability of free carbenes.¹³ Therefore, we considered a new synthetic strategy, in which the ligand is built in the coordination sphere of the metal.^{15,16} Isocyanide gold chlorides 1a-e were reacted with 1 equiv of 3-piperidine methanol, generating the corresponding acyclic di(amino)carbene gold complexes 2a-e (Scheme 1). Addition of triflic

anhydride, in the presence of base, triggered the cyclization, and gold chloride complexes 3a-e were isolated in good yields. These organometallic compounds are air-stable and can be stored for several months with no significant decomposition. They were fully characterized, including by X-ray diffraction analysis for 3a and 3e (Figure 1).

In a first experiment, a solution of α -methylstyrene and N,Ndiethylaniline in benzene was heated in a sealed ampule in the

Figure 1. X-ray structure of **3a** (left) and **3e** (right) with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Received: August 4, 2014 Published: September 15, 2014

Journal of the American Chemical Society

presence of a catalytic amount (5 mol %) of **3a** and $KB(C_6F_5)_4$. To our delight, we observed the clean formation of the corresponding *para*-hydroarylation adduct **4a** with complete conversion after 24 h at 135 °C (Table 1, entry 1). Under the

Table 1. Hydroarylation of α -Methylstyrene with N,N-Diethylaniline^{α}

Et N– Et	+ Ph	$I \rightarrow H$ 4a
entry	catalytic system	conversion (%)
1	$[3a + KB(C_6F_5)_4]$ (5 mol %)	97
2	$[3b + KB(C_6F_5)_4]$ (5 mol %)	98
3	$[3c + KB(C_6F_5)_4]$ (5 mol %)	89
4	$[3d + KB(C_6F_5)_4]$ (5 mol %)	69
5	$[3e + KB(C_6F_5)_4]$ (5 mol %)	38
6	3a (5 mol %)	0
7	[3a + AgOSO ₂ CF ₃] (5 mol %)	12
8	$[AuCl_3 + 3 AgSbF_6]$ (5 mol %)	10
9	FeCl ₃ (10 mol %)	3
10	BiCl ₃ (10 mol %)	4
⁴ After 24 h; determined by GC.		

same conditions, 3b and 3c gave comparable results (entries 2 and 3), whereas a slower rate was observed with the nitro-

Scheme 2. Hydroarylation of Alkenes with N,N-Dialkylanilines^a

substituted pyrNHC 3d as catalyst (entry 4). In the case of 3e, the conversion reached a ceiling at 38%, suggesting a decomposition of the catalyst. No reaction was observed with **3a** in the absence of $KB(C_6F_5)_4$ (entry 6), and even using silver triflate, as an alternative chloride scavenger, led to poor conversion (entry 7). These observations confirm the expected involvement of a cationic gold complex in the catalytic cycle. We also verified that simple systems, such as AuCl₃/AgSbF₆,¹⁷ FeCl₃¹⁸ or BiCl₃¹⁹ which are recognized as efficient catalysts for the hydroarylation of alkenes, were poorly active for the reaction of N,N-diethylaniline with α -methylstyrene (entries 8– 10). Not surprisingly, 1 mol % of our catalytic system [3a + $KB(C_6F_5)_4$ promotes the hydroarylation of styrene with anisole, at room temperature, but this reaction is totally inhibited by the presence of N,N-diethylaniline. These last observations highlight the powerful deactivating role of anilines (see Supporting Information (SI) for details).

Using **3a** and $\text{KB}(\text{C}_6\text{F}_5)_4$ as catalytic system, we explored the scope of this unprecedented hydroarylation reaction. We found that *N*,*N*-dialkylanilines react with a variety of styrenes and norbornene, affording products **4a**–**q** and **5l**,**q** in fair to excellent yields (Scheme 2). Not surprisingly, significantly lower temperatures are required for the hydroarylation of 4-methoxystyrene (80–110 °C) than for the less electron-rich styrene and norbornene (145 °C). The high *para*-regioselectivity observed in the reaction leading to **4a–h**, **4j** and **4m–p** is likely the consequence of the steric hindrance of the 1-phenyl-

^a3a (5 mol %), KB(C₆F₅)₄ (5 mol %), except for 4m-p (10 mol %). Solvent: C₆H₆. Isolated yields. See SI for details. ^bGC conversion.

13595

Journal of the American Chemical Society

1-(methyl)ethyl and 1,1-diphenylethyl groups. However, electronic effects are also of importance since the *para*-substituted products are selectively formed with 4-methoxystyrene (4f-j), but not with styrene (4k-l and 5k-l). Interestingly, the selective formation of 4i shows that the preference of 4-methoxystyrene for *para*-substitution does not preclude the *ortho*-substitution when the *para*-position is protected. Note that *ortho*-substitution is usually favored by the few systems that are known to promote the hydroarylation of alkenes with the parent aniline.^{5,6} Ackermann et al. have even demonstrated that the hydroarylation product results from the rearrangement of the initially formed hydroamination product.^{6g}

Although unactivated alkenes, such as 1-octene, 3-octene and tetra(methyl)ethylene do not react with $N_{,}N'$ -dimethylaniline, our catalytic system allowed for the hydroarylation of enones (Scheme 3). This reaction is the atom economic equivalent of a

Scheme 3. Hydroarylation of Enones with *N*,*N*-Di(alkyl)anilines^{*a*}

^{*a*}**3a** (5 mol %), KB(C_6F_5)₄ (5 mol %). Solvent: C_6H_6 . Isolated yields. See SI for details.

Michael 1,4-addition. Butanone, chalcone, cyclopentenone and cyclohexenone react with dialkylanilines, the corresponding β -(aryl)ketones being isolated in fair yields and excellent *para*-regioselectivity. Note that although several catalytic systems are known to promote the hydroarylation of electron-poor olefins,^{20,21} there are no reports with anilines as substrates.

In conclusion, cationic anti-Bredt di(amino)carbene gold(I) complexes are readily available from the corresponding isocyanide complexes. In the presence of $KB(C_6F_5)_4$ as chloride scavenger, they promote the hydroarylation of styrenes and norbornene, as well as enones, by dialkylanilines in fair to excellent yields, with very good *para*-selectivity. These results further demonstrate the unique ability of cationic gold(I)

complexes, bearing stable electrophilic carbenes as the ancillary ligand, to promote reactions that are usually hampered by nucleophilic substrates.

ASSOCIATED CONTENT

Supporting Information

Full experimental details, ¹H, ¹³C NMR and MS spectra for all new compounds and X-ray crystallographic data for **3a** and **3e**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

guybertrand@ucsd.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the DOE (DE-FG02-13ER16370). Thanks are due to the National Natural Science Foundation of China (No. 21176110) and Jiangsu Province Natural Science Foundation (BK20141311) for a Fellowship (X.H.).

REFERENCES

(1) (a) Friedel, C.; Crafts, J. M. J. Chem. Soc. 1877, 32, 725.
 (b) Roberts, R. M.; Khalaf, A. A. Friedel-Crafts Alkylation Chemistry. A Discovery; Marcel Dekker: New York, 1984.

(2) For a review on modern Friedel–Crafts alkylations, see: Rueping, M.; Nachtsheim, B. J. *Beilstein J. Org. Chem.* **2010**, *6*, No. 6.

(3) March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structures, 4th ed.; John Wiley & Sons: New York, 1992; p 536.

(4) For reviews on hydroarylation, see: (a) Boorman, T. C.; Larrosa, I. Chem. Soc. Rev. 2011, 40, 1910. (b) Andreatta, J. R.; McKeown, B. A.; Gunnoe, T. B. J. Organomet. Chem. 2011, 696, 305. (c) de Mendoza, P.; Echavarren, A. M. Pure Appl. Chem. 2010, 82, 801.

(5) For transition-metal catalyzed hydroarylation of alkenes with anilines, see: (a) Brunet, J. J.; Neibecker, D.; Philippot, K. J. Chem. Soc., Chem. Commun. 1992, 1215. (b) Brunet, J. J.; Commenges, D.; Neibecker, D.; Philippot, K. J. Organomet. Chem. 1994, 469, 221.
(c) Beller, M.; Thiel, O. R.; Trauthwein, H. Synlett 1999, 243.
(d) Uchimaru, Y. Chem. Commun. 1999, 1133. (e) Prades, A.; Corberan, R.; Poyatos, M.; Peris, E. Chem.—Eur. J. 2009, 15, 4610.

(6) See also: (a) Stroh, R.; Ebersberger, J.; Haberland, H.; Hahn, W. Angew. Chem. 1957, 69, 124. (b) Ecke, G. G.; Napolitano, J. P.; Kolka, A. J. J. Org. Chem. 1956, 21, 711. (c) Hart, H.; Kosak, J. R. J. Org. Chem. 1962, 27, 116. (d) Olifirov, D. I.; Koshchii, V. A.; Kozlikovskii, Y. B. Zh. Org. Khim. 1992, 28, 1206. (e) Anderson, L. L.; Arnold, J.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127, 14542. (f) Cherian, A. E.; Domski, G. J.; Rose, J. M.; Lobkovsky, E. B.; Coates, G. W. Org. Lett. 2005, 7, 5135. (g) Kaspar, L. T.; Fingerhut, B.; Ackermann, L. Angew. Chem., Int. Ed. 2005, 44, 5972. (h) Lapis, A. A. M.; Dasilveira Neto, B. A.; Scholten, J. D.; Nachtigall, F. M.; Eberlin, M. N.; Dupont, J. Tetrahedron Lett. 2006, 47, 6775. (i) Marcsekova, K.; Doye, S. Synthesis 2007, 145.

(7) N-Heterocycles with significantly lower basicity, such as indoles and pyrroles, have been extensively studied. For some recent examples, see: (a) Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292.
(b) Wang, M. Z.; Wong, M.-K.; Che, C.-M. Chem.—Eur. J. 2008, 14, 8353. (c) Trost, B. M.; Muller, C. J. Am. Chem. Soc. 2008, 130, 2438.
(d) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.
(e) Huang, H.; Peters, R. Angew. Chem., Int. Ed. 2009, 48, 604.
(f) Singh, P. K.; Singh, V. K. Org. Lett. 2010, 12, 80. (g) Wang, M.-Z.; Zhou, C.-Y.; Guo, Z.; Wong, E. L.-M.; Wong, M.-K.; Che, C.-M. Chem.—Asian J. 2011, 6, 812. (h) Pan, S.; Ryu, N.; Shibata, T. J. Am. Chem. Soc. 2012, 134, 17474. (i) Kieffer, M. E.; Repka, L. M.; Reisman,

S. E. J. Am. Chem. Soc. 2012, 134, 5131. (j) Gao, J.; Wu, H.; Xiang, B.;
Yu, W.-B.; Han, L.; Jia, Y.-X. J. Am. Chem. Soc. 2013, 135, 2983.
(k) Sevov, C. S.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2116.

(8) For reviews on hydroamination reactions, see: (a) Müller, T. E.; Beller, M. Chem. Rev. **1998**, 98, 675. (b) Hultzsch, K. C. Adv. Synth. Catal. **2005**, 347, 367. (c) Severin, R.; Doye, S. Chem. Soc. Rev. **2007**, 36, 1407. (d) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. **2008**, 108, 3795. (e) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. **2008**, 108, 3795. (f) Hannedouche, J.; Schulz, E. Chem.—Eur. J. **2013**, 19, 497.

(9) (a) Heaton, B. T.; Jacob, C.; Page, P. Coord. Chem. Rev. **1996**, 154, 193. (b) Khin, C.; Hashmi, A. S. K.; Rominger, F. Eur. J. Inorg. Chem. **2010**, 1063.

(10) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705.

(11) (a) Lavallo, V.; Frey, G. D.; Kousar, S.; Donnadieu, B.; Bertrand, G. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569. (b) Lavallo, V.; Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.; Bertrand, G. Angew. Chem, Int. Ed. 2008, 47, 5224. (c) Zeng, X.; Frey, G. D.; Kinjo, R.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2009, 131, 8690. (d) Zeng, X.; Frey, G. D.; Kousar, S.; Bertrand, G. Chem.—Eur. J. 2009, 15, 3056. (e) Zeng, X.; Soleilhavoup, M.; Bertrand, G. Org. Lett. 2009, 11, 3166. (f) Zeng, X.; Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 942. (g) Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2011, 50, 5560. (h) For the recent use of gold(I) complexes of aza-analogues of CAACs, see: Manzano, R.; Wurm, T.; Rominger, F.; Hashmi, A. S. K. Chem.—Eur. J. 2014, 20, 6844. (i) The aza-analogues of CAACs are accessible in one step: Hashmi, A. S. K.; Riedel, D.; Rudolph, M.; Rominger, F.; Oeser, T. Chem.—Eur. J. 2012, 18, 3827.

(12) (a) Martin, D.; Lassauque, N.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. **2012**, 51, 6172. (b) Martin, D.; Lassauque, N.; Steinmann, F.; Manuel, G.; Bertrand, G. Chem.—Eur. J. **2013**, 19, 14895.

(13) López-Gómez, M. J.; Martin, D.; Bertrand, G. Chem. Commun. 2013, 49, 4483.

(14) Cationic gold(I) complexes are known to catalyze Friedel– Crafts reactions: (a) Li, Z.; Brouwer, C.; He, C. *Chem. Rev.* **2008**, *108*, 3239. (b) Bandini, M. *Chem. Soc. Rev.* **2011**, *40*, 1358. (c) Ciarucci, M.; Bandini, M. *Beilstein Org. Chem.* **2013**, *9*, 2586. (d) Brooner, R. E. M.; Widenhoefer, R. A. *Angew. Chem., Int. Ed.* **2013**, *52*, 11714.

(15) A similar approach has been used for the synthesis of classical NHC-metal complexes: (a) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122. (b) Hahn, F. E.; Langenhahn, V.; Meier, N.; Lügger, T.; Fehlhammer, W. P. Chem.—Eur. J. 2003, 9, 704. (c) Hahn, F. E.; García-Plumed, C.; Münder, M.; Lügger, T. Chem.—Eur. J. 2004, 10, 6285. (d) Hahn, F. E.; Langenhahn, V.; Pape, T. Chem. Commun. 2005, 5390. (e) Tamm, M.; Hahn, F. E. Coord. Chem. Rev. 1999, 182, 175. (f) Kaufhold, O.; Stasch, A.; Edwards, P. G.; Hahn, F. E. Chem. Commun. 2007, 1822.

(16) A similar approach has been used for the synthesis of other carbene-gold complexes: (a) Hashmi, A. S. K.; Lothschütz, C.; Böçhling, C.; Hengst, T.; Hubbert, C.; Rominger, F. Adv. Synth. Catal. **2010**, 352, 3001. (b) Hashmi, A. S. K.; Lothschütz, C.; Graf, K.; Häffner, T.; Schuster, A.; Rominger, F. Adv. Synth. Catal. **2011**, 353, 1407. (c) Hashmi, A. S. K.; Yu, Y.; Rominger, F. Organometallics **2012**, *31*, 895. (d) Hashmi, A. S. K.; Riedel, D.; Rudolph, M.; Rominger, F.; Oeser, T. Chem.—Eur. J. **2012**, *18*, 3827. (e) Manzano, R.; Rominger, F.; Hashmi, A. S. K. Organometallics **2013**, *32*, 2199. (f) Blanco Jaimes, M. C.; Böhling, C. R. N; Serrano-Becerra, J. M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. **2013**, *52*, 7963.

(17) Xiao, Y. P.; Liu, X. Y.; Che, C. M. J. Organomet. Chem. 2009, 694, 494.

(18) Kischel, J.; Jovel, I.; Mertins, K.; Zapf, A.; Beller, M. Org. Lett. 2006, 8, 19.

(19) Sun, H.; Li, B.; Hua, R.; Yin, Y. Eur. J. Org. Chem. 2006, 4231.
(20) For examples of Au(III) catalyzed hydroarylation of electron-poor olefins, see: (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J. H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285. (b) Dyker, G.; Muth, E.;

Hashmi, A. S. K. Adv. Synth. Catal. 2003, 345, 1247. (c) Li, Z.; Shi, Z.; He, C. J. Organomet. Chem. 2005, 690, 5049. (d) Aguilar, D.; Contel, M.; Navarro, R.; Urriolabeitia, E. P. Organometallics 2007, 26, 4604. (e) Hashmi, A. S. K.; Bechem, B.; Loos, A.; Harnzic, M.; Rominger, F.; Rabaa, H. Aust. J. Chem. 2014, 67, 481.

(21) For other catalytic systems, see also: (a) Tateiwa, J.-I.; Horiuchi, H.; Hashimoto, K.; Yamauchi, T.; Uemura, S. J. Org. Chem. 1994, 59, 5901. (b) Bunce, R. A.; Reeves, H. D. Synth. Commun. 1989, 19, 1109. (c) Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 160. (d) Yadav, J. S.; Abraham, S.; Reddy, B. V. S.; Sabitha, G. Synthesis 2001, 2165. (e) Aguilar, R.; Benavides, A.; Tamariz, J. Synth. Commun. 2004, 34, 2719. (f) Gu, Y. L.; Ogawa, C.; Kobayashi, J.; Mori, Y.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 7217. (g) Gu, Y. L.; Ogawa, C.; Kobayashi, S. Org. Lett. 2007, 9, 175. (h) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903. (i) Sun, Z.-M.; Zhang, J.; Manan, R. S.; Zhao, P. J. Am. Chem. Soc. 2010, 132, 6935. (j) Das, D.; Pratihar, S.; Roy, S. J. Org. Chem. 2013, 78, 2430.